Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, app(app(:, x), y)), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, app(app(:, x), y)), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, x), z))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, app(app(:, app(app(:, x), y)), z))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(:, x)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 14 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

:1(:(:(:(C, x), y), z), u) → :1(:(x, z), :(:(:(x, y), z), u))
:1(:(:(:(C, x), y), z), u) → :1(x, z)
:1(:(:(:(C, x), y), z), u) → :1(:(x, y), z)
:1(:(:(:(C, x), y), z), u) → :1(x, y)
:1(:(:(:(C, x), y), z), u) → :1(:(:(x, y), z), u)

The TRS R consists of the following rules:

:(:(:(:(C, x), y), z), u) → :(:(x, z), :(:(:(x, y), z), u))

The set Q consists of the following terms:

:(:(:(:(C, x0), x1), x2), x3)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), y)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, x), y)), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, x), z)
APP(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → APP(app(:, app(app(:, app(app(:, x), y)), z)), u)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
:1(x1, x2)  =  :1(x1, x2)
:(x1, x2)  =  :(x1, x2)
C  =  C

Lexicographic Path Order [19].
Precedence:
:12 > :2

The following usable rules [14] were oriented:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1, x2)
app(x1, x2)  =  app(x1, x2)
filter2  =  filter2
true  =  true
filter  =  filter
map  =  map
cons  =  cons
false  =  false

Lexicographic Path Order [19].
Precedence:
app2 > APP2 > map > filter
filter2 > filter
true > filter
cons > filter
false > APP2 > map > filter

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(:, app(app(:, app(app(:, app(app(:, C), x)), y)), z)), u) → app(app(:, app(app(:, x), z)), app(app(:, app(app(:, app(app(:, x), y)), z)), u))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(:, app(app(:, app(app(:, app(app(:, C), x0)), x1)), x2)), x3)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.